skip to main content


Search for: All records

Creators/Authors contains: "Loranty, Michael M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    In the Arctic, winter soil temperatures exert strong control over mean annual soil temperature and winter CO2emissions. In tundra ecosystems there is evidence that plant canopy influences on snow accumulation alter winter soil temperatures. By comparison, there has been relatively little research examining the impacts of heterogeneity in boreal forest cover on soil temperatures. Using seven years of data from six sites in northeastern Siberia that vary in stem density we show that snow-depth and forest canopy cover exert equally strong control on cumulative soil freezing degrees days (FDDsoil). Together snow depth and canopy cover explain approximately 75% of the variance in linear models of FDDsoiland freezingn-factors (nf; calculated as the quotient of FDDsoiland FDDair), across sites and years. Including variables related to air temperature, or antecedent soil temperatures does not substantially improve models. The observed increase in FDDsoilwith canopy cover suggests that canopy interception of snow or thermal conduction through trees may be important for winter soil temperature dynamics in forested ecosystems underlain by continuous permafrost. Our results imply that changes in Siberian larch forest cover that arise from climate warming or fire regime changes may have important impacts on winter soil temperature dynamics.

     
    more » « less
  2. Soil temperatures play an important role in determining the distribution and function of organisms. However, soil temperature is decoupled from air temperature and varies widely in space. Characterizing and predicting soil temperature requires large and expensive networks of data loggers. We developed an open-source soil temperature data logger and created online resources to ensure our design was accessible. We tested data loggers constructed by students, with little prior electronics experience, in the lab, and in the field in Alaska. The do-it-yourself (DIY) data logger was comparably accurate to a commercial system with a mean absolute error of 2% from −20–0 °C and 1% from 0–20 °C. They captured accurate soil temperature data and performed reliably in the field with less than 10% failing in the first year of deployment. The DIY loggers were ~1.7–7 times less expensive than commercial systems. This work has the potential to increase the spatial resolution of soil temperature monitoring and serve as a powerful educational tool. The DIY soil temperature data logger will reduce data collection costs and improve our understanding of species distributions and ecological processes. It also provides an educational resource to enhance STEM, accessibility, inclusivity, and engagement. 
    more » « less
  3. Abstract

    Circum-boreal and -tundra systems are crucial carbon pools that are experiencing amplified warming and are at risk of increasing wildfire activity. Changes in wildfire activity have broad implications for vegetation dynamics, underlying permafrost soils, and ultimately, carbon cycling. However, understanding wildfire effects on biophysical processes across eastern Siberian taiga and tundra remains challenging because of the lack of an easily accessible annual fire perimeter database and underestimation of area burned by MODIS satellite imagery. To better understand wildfire dynamics over the last 20 years in this region, we mapped area burned, generated a fire perimeter database, and characterized fire regimes across eight ecozones spanning 7.8 million km2of eastern Siberian taiga and tundra from ∼61–72.5° N and 100° E–176° W using long-term satellite data from Landsat, processed via Google Earth Engine. We generated composite images for the annual growing season (May–September), which allowed mitigation of missing data from snow-cover, cloud-cover, and the Landsat 7 scan line error. We used annual composites to calculate the difference Normalized Burn Ratio (dNBR) for each year. The annual dNBR images were converted to binary burned or unburned imagery that was used to vectorize fire perimeters. We mapped 22 091 fires burning 152 million hectares (Mha) over 20 years. Although 2003 was the largest fire year on record, 2020 was an exceptional fire year for four of the northeastern ecozones resulting in substantial increases in fire activity above the Arctic Circle. Increases in fire extent, severity, and frequency with continued climate warming will impact vegetation and permafrost dynamics with increased likelihood of irreversible permafrost thaw that leads to increased carbon release and/or conversion of forest to shrublands.

     
    more » « less
  4. Rapid Arctic environmental change affects the entire Earth system as thawing permafrost ecosystems release greenhouse gases to the atmosphere. Understanding how much permafrost carbon will be released, over what time frame, and what the relative emissions of carbon dioxide and methane will be is key for understanding the impact on global climate. In addition, the response of vegetation in a warming climate has the potential to offset at least some of the accelerating feedback to the climate from permafrost carbon. Temperature, organic carbon, and ground ice are key regulators for determining the impact of permafrost ecosystems on the global carbon cycle. Together, these encompass services of permafrost relevant to global society as well as to the people living in the region and help to determine the landscape-level response of this region to a changing climate. 
    more » « less
  5. Climate warming is altering the persistence, timing, and distribution of permafrost and snow cover across the terrestrial northern hemisphere. These cryospheric changes have numerous consequences, not least of which are positive climate feedbacks associated with lowered albedo related to declining snow cover, and greenhouse gas emissions from permafrost thaw. Given the large land areas affected, these feedbacks have the potential to impact climate on a global scale. Understanding the magnitudes and rates of changes in permafrost and snow cover is therefore integral for process understanding and quantification of climate change. However, while permafrost and snow cover are largely controlled by climate, their distributions and climate impacts are influenced by numerous interrelated ecosystem processes that also respond to climate and are highly heterogeneous in space and time. In this perspective we highlight ongoing and emerging changes in ecosystem processes that mediate how permafrost and snow cover interact with climate. We focus on larch forests in northeastern Siberia, which are expansive, ecologically unique, and studied less than other Arctic and subarctic regions. Emerging fire regime changes coupled with high ground ice have the potential to foster rapid regional changes in vegetation and permafrost thaw, with important climate feedback implications. 
    more » « less
  6. Abstract Aim

    Wildfire is an essential disturbance agent that creates burn mosaics, or a patchwork of burned and unburned areas across the landscape. Unburned patches, fire refugia, serve as carbon sinks and seed sources for forest regeneration in burned areas. In the Cajander larch (Larix cajanderiMayr.) forests of north‐eastern Siberia, an unprecedented wildfire season in 2020 and little documentation of landscape patch dynamics have resulted in research gaps about the characteristics of fire refugia in northern latitude forests, which are warming faster than other global forest ecosystems. We aim to characterize the 2010 distribution of fire refugia for these forest ecosystems and evaluate their topographic drivers.

    Location

    North‐eastern Siberia across the North‐east Siberian Taiga and the Cherskii‐Kolyma Mountain Tundra ecozones.

    Time period

    2001–2020.

    Major taxa studied

    Cajander larch.

    Methods

    We used Landsat imagery to define burned and unburned patches, and the Arctic digital elevation model to calculate topographic variables. We characterized the size and density of fire refugia. We sampled individual pixels (n = 80,000) from an image stack that included a binary burned/unburned, elevation, slope, aspect, topographic position index, ruggedness, and tree cover from 2001 to 2020. We evaluated the topographic drivers of fire refugia with boosted regression trees.

    Results

    We found no substantial difference in fire refugia size and density across the region. The fire refugia size averaged 7.2 ha (0.09–150,439 ha). The majority of interior burned patches exceed the potential wind dispersal distance from fire refugia. Topographic position index and terrain steepness were important predictors of fire refugia.

    Main conclusions

    Unprecedented wildfires in 2020 did not impact fire refugia formation. Fire refugia are strongly controlled by topographic positions such as uplands and lowlands that influence microsite hydrological conditions. Fire refugia contribute to postfire landscape heterogeneity that preserves ecosystem functions, seed sources, habitat, and carbon sinks.

     
    more » « less
  7. null (Ed.)
    Cajander larch (Larix cajanderi Mayr.) forests of the Siberian Arctic are experiencing increased wildfire activity in conjunction with climate warming. These shifts could affect postfire variation in the density and arrangement of trees and understory plant communities. To better understand how understory plant composition, abundance, and diversity vary with tree density, we surveyed understory plant communities and stand characteristics (e.g., canopy cover, active layer depth, and soil organic layer depth) within 25 stands representing a density gradient of similarly-aged larch trees that established following a 1940 fire near Cherskiy, Russia. Understory plant diversity and mean total plant abundance decreased with increased canopy cover. Canopy cover was also the most important variable affecting individual species’ abundances. In general, tall shrubs (e.g., Betula nana subsp. exilis) were more abundant in low-density stands with high light availability, and mosses (e.g., Sanionia spp.) were more abundant in high-density stands with low light availability. These results provide evidence that postfire variation in tree recruitment affects understory plant community composition and diversity as stands mature. Therefore, projected increases in wildfire activity in the Siberian Arctic could have cascading impacts on forest structure and composition in both overstory and understory plant communities. 
    more » « less
  8. null (Ed.)
    The transition zone between the northern boreal forest and the arctic tundra, known as the tundra-taiga ecotone (TTE) has undergone rapid warming in recent decades. In response to this warming, tree density, growth, and stand productivity are expected to increase. Increases in tree density have the potential to negate the positive impacts of warming on tree growth through a reduction in the active layer and an increase in competitive interactions. We assessed the effects of tree density on tree growth and climate-growth responses of Cajander larch (Larix cajanderi) and on trends in the normalized difference vegetation index (NDVI) in the TTE of Northeast Siberia. We examined 19 mature forest stands that all established after a fire in 1940 and ranged in tree density from 300 to 37,000 stems ha-1. High density stands with shallow active layers had lower tree growth, higher stand productivity, and more negative growth responses to growing season temperatures compared to low density stands with deep active layers. Variation in stand productivity across the density gradient was not captured by Landsat derived NDVI, but NDVI did capture annual variations in stand productivity. Our results suggest that the expected increases in tree density following fires at the TTE may effectively limit tree growth and that NDVI is unlikely to capture increasing productivity associated with changes in tree density. 
    more » « less
  9. null (Ed.)
    Carbon cycle perturbations in high-latitude ecosystems associated with rapid warming can have implications for the global climate. Belowground biomass is an important component of the carbon cycle in these ecosystems, with, on average, significantly more vegetation biomass belowground than aboveground. Large quantities of dead root biomass are also in these ecosystems owing to slow decomposition rates. Current understanding of how live and dead root biomass carbon pools vary across highlatitude ecosystems and the environmental conditions associated with this variation is limited due to the labor- and time-intensive nature of data collection. To that end, we examined patterns and factors (abiotic and biotic) associated with the variation in live and dead fine root biomass (FRB) and FRB carbon (C), nitrogen (N) and phosphorus concentrations for 23 sites across a latitudinal gradient in Alaska, spanning both boreal forest and tundra biomes. We found no difference in the live or dead FRB variables between these biomes, despite large differences in predominant vegetation types, except for significantly higher live FRB C:N ratios in boreal sites. Soil C:N ratio, moisture, and temperature, along with moss cover, explained a substantial portion of the dead:live FRB ratio variability across sites. We find all these factors have negative relationships with dead FRB, while having positive or no relationship with live FRB. This work demonstrates that FRB does not necessarily correlate with aboveground vegetation characteristics, and it highlights the need for finer-scale measurements of abiotic and biotic factors to understand FRB landscape variability now and into the future. 
    more » « less